direct product, abelian, monomial, 2-elementary
Aliases: C22×C6, SmallGroup(24,15)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22×C6 |
C1 — C22×C6 |
C1 — C22×C6 |
Generators and relations for C22×C6
G = < a,b,c | a2=b2=c6=1, ab=ba, ac=ca, bc=cb >
Character table of C22×C6
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ10 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ65 | ζ6 | ζ32 | ζ65 | ζ6 | ζ3 | ζ65 | ζ6 | ζ3 | ζ65 | ζ6 | linear of order 6 |
ρ11 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ6 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ65 | ζ65 | ζ6 | linear of order 6 |
ρ12 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ6 | ζ6 | ζ3 | ζ65 | ζ6 | ζ32 | ζ65 | ζ6 | ζ65 | ζ3 | ζ32 | ζ65 | ζ3 | ζ32 | linear of order 6 |
ρ13 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | ζ32 | ζ3 | ζ32 | ζ6 | ζ65 | ζ3 | ζ32 | ζ6 | ζ65 | ζ6 | ζ65 | ζ3 | ζ32 | ζ3 | ζ65 | ζ6 | linear of order 6 |
ρ14 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | ζ32 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ3 | ζ3 | ζ32 | linear of order 6 |
ρ15 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ6 | ζ32 | ζ65 | ζ3 | ζ32 | ζ6 | ζ65 | ζ6 | ζ3 | ζ65 | ζ6 | ζ65 | ζ3 | ζ32 | linear of order 6 |
ρ16 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | linear of order 6 |
ρ17 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ18 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ6 | ζ65 | ζ3 | ζ6 | ζ65 | ζ32 | ζ6 | ζ65 | ζ32 | ζ6 | ζ65 | linear of order 6 |
ρ19 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ65 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ6 | ζ6 | ζ65 | linear of order 6 |
ρ20 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ65 | ζ65 | ζ32 | ζ6 | ζ65 | ζ3 | ζ6 | ζ65 | ζ6 | ζ32 | ζ3 | ζ6 | ζ32 | ζ3 | linear of order 6 |
ρ21 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | ζ3 | ζ32 | ζ3 | ζ65 | ζ6 | ζ32 | ζ3 | ζ65 | ζ6 | ζ65 | ζ6 | ζ32 | ζ3 | ζ32 | ζ6 | ζ65 | linear of order 6 |
ρ22 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | ζ3 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ32 | ζ32 | ζ3 | linear of order 6 |
ρ23 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ65 | ζ3 | ζ6 | ζ32 | ζ3 | ζ65 | ζ6 | ζ65 | ζ32 | ζ6 | ζ65 | ζ6 | ζ32 | ζ3 | linear of order 6 |
ρ24 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | linear of order 6 |
(1 17)(2 18)(3 13)(4 14)(5 15)(6 16)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)
(1 11)(2 12)(3 7)(4 8)(5 9)(6 10)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
G:=sub<Sym(24)| (1,17)(2,18)(3,13)(4,14)(5,15)(6,16)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24), (1,11)(2,12)(3,7)(4,8)(5,9)(6,10)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)>;
G:=Group( (1,17)(2,18)(3,13)(4,14)(5,15)(6,16)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24), (1,11)(2,12)(3,7)(4,8)(5,9)(6,10)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24) );
G=PermutationGroup([[(1,17),(2,18),(3,13),(4,14),(5,15),(6,16),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24)], [(1,11),(2,12),(3,7),(4,8),(5,9),(6,10),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)]])
G:=TransitiveGroup(24,3);
C22×C6 is a maximal subgroup of
C6.D4
Matrix representation of C22×C6 ►in GL3(𝔽7) generated by
1 | 0 | 0 |
0 | 6 | 0 |
0 | 0 | 6 |
6 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
3 | 0 | 0 |
0 | 2 | 0 |
0 | 0 | 5 |
G:=sub<GL(3,GF(7))| [1,0,0,0,6,0,0,0,6],[6,0,0,0,1,0,0,0,1],[3,0,0,0,2,0,0,0,5] >;
C22×C6 in GAP, Magma, Sage, TeX
C_2^2\times C_6
% in TeX
G:=Group("C2^2xC6");
// GroupNames label
G:=SmallGroup(24,15);
// by ID
G=gap.SmallGroup(24,15);
# by ID
G:=PCGroup([4,-2,-2,-2,-3]);
// Polycyclic
G:=Group<a,b,c|a^2=b^2=c^6=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations
Export
Subgroup lattice of C22×C6 in TeX
Character table of C22×C6 in TeX